\qquad
Date: \qquad

Converting Decimal and Binary Numbers

Convert the given Decimal number to its Binary equivalent.

1) $61_{(10)}=$ \qquad 2) $54_{(10)}=$ \qquad
2) $40_{(10)}=$ \qquad
(2)
3) $36_{(10)}=$ \qquad
4) $41_{(10)}=$ \qquad
(2)
5) $59_{(10)}=$ \qquad
6) $50_{(10)}=$ \longrightarrow (2)
(2)
7) $39_{(10)}=$ \qquad

Convert the given Binary to its Decimal equivalent.
9) $100010_{(2)}=\square$ (10)
11) $110111_{(2)}=\square_{\text {(10) }}$
13) $100110_{(2)}=$ \qquad
15) $101100_{(2)}=\square$ (10)
16) $110011_{(2)}=$ \qquad
\qquad
Date: \qquad

The Journey Inside ${ }^{\text {SM }}$: Digital Information

Student Handout: ASCII Computer Code

ASCII Computer Code

Computers work in binary code. Information is coded using 0 s and 1 s . Each 0 or 1 is called a bit. In the early years of computer development, different computer companies applied the binary system in their own way. The code for the letters in the word "cat" was often different in different brands of computers.

Eventually, a set of standards was developed. Computer manufacturers agreed to use one code called the ASCII (American Standard Code for Information Interchange). ASCII is an 8 -bit code. That is, it uses eight bits to represent a letter or a punctuation mark. Eight bits are called a byte. A binary code with eight digits, such as 11011011_{2}, can be stored in one byte of computer memory. The word "CAT" in a word processor becomes $01000011_{2}, 0100$ 0001_{2}, and 01010100_{2}. The word "cat" is $01100011_{2}, 01100001_{2}$, and 01110100_{2}.

Each letter, number, and symbol is represented by an 8-bit ASCII code. Part of the ASCII code is given in this handout. Notice that there is even an ASCII code for a blank space.
\qquad
Date: \qquad

Character	Decimal Number	Binary Number	Character	Decimal Number	Binary Number
blank space	32	00100000	*	94	01011110
!	33	00100001	-	95	01011111
"	34	00100010	,	96	01100000
\#	35	00100011	a	97	01100001
\$	36	00100100	b	98	01100010
A	65	01000001	c	99	01100011
B	66	01000010	d	100	01100100
C	67	01000011	e	101	01100101
D	68	01000100	f	102	01100110
E	69	01000101	g	103	01100111
F	70	01000110	h	104	01101000
G	71	01000111	i	105	01101001
H	72	01001000	j	106	01101010
I	73	01001001	k	107	01101011
J	74	01001010	1	108	01101100
K	75	01001011	m	109	01101101
L	76	01001100	n	110	01101110
M	77	01001101	。	111	01101111
N	78	01001110	p	112	01110000
0	79	01001111	q	113	01110001
P	80	01010000	r	114	01110010
Q	81	01010001	s	115	01110011
R	82	01010010	t	116	01110100
S	83	01010011	u	117	01110101
T	84	01010100	v	118	01110110
U	85	01010101	w	119	01110111
V	86	01010110	x	120	01111000
W	87	01010111	y	121	01111001
X	88	01011000	z	122	01111010
Y	89	01011001	¢	123	01111011
z	90	01011010	1	124	01111100
[91	01011011)	125	01111101
'	92	01011100	~	126	01111110
]	93	01011101			

Activities

1. Use the ASCII code to write your first name or nickname in binary numbers beginning with an uppercase letter and continuing with lowercase letters. Put the letters of your name in the first column.

Letter	Binary representation of the letter								

\qquad
Date: \qquad
2. In the space below, write a short message in decimal and binary (using the ASCII code). Exchange messages with a partner and decode each other's message. (hint: a helpful resource for this would be one of following website: https://www.binaryhexconverter.com/binary-to-ascii-text-converter or https://www.branah.com/ascii-converter Or just google "binary to ascii converter" or "decimal to asci converter")
A. Your ASCII message in binary notation (you can use the blank space on page 2 as scratch paper to help you find this):
B. Your partner's ASCII message in binary and decimal notation as well as decoded:
3. The ASCII code for a blank space is the decimal number 32, or the binary number 00100000 . Why do you think it is imprtant to have a code for a blank space?
4. How many characters of text are there in an average book? To help answer this question, select several different books of varying lengths. For each book, estimate the number of characters of text. Remember to count the punctuation marks and include the blank character between words and sentences. Since ASCII is an 8-bit code and requires 8 binary numbers to represent each letter, blank space, or punctuation mark, how many binary numbers does it take to represent the text of an average book? (Hint: Multiply 8 by the average number of text characters.)

