Binary Counting \& ASCII Values

Wheeler HS Fall 19

Finishing the Semester

November 2019

Su	M	Tu	W	Th	\mathbf{F}	Sa 2
3	4	5	Eิ̂ Unit LTose Ends			9
10	11	12	13		15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

December 2019

Finishing Electrical Engineering Loose Ends

1. Binary and Ascii

- Notes \& worksheet

2. Arduino Project "Presentations"
3. ADC \& PWM Challenges

Warmup: Asides from "ten" how can you symbolically show that there are 10 of an object?

What istho binary syetem and havis it used incomputings

- We use number systems everyday.
- Hold up your hand=how many fingers do you see?
- TEN! We use a base=10 number set
- Base -10 has $0,1,2,3,4,5,6,7,8,9$
- Our computers uses a number set too=the binary system!

Compritero and circuits are in 2 staters

- On
- Off

- This is encoded by the Binary System! The Binary System tells computers and circuits which wires need to be on and which need to be off.

Bughow dces it workm

- Bacase-10 of the decimal system

$$
=0,1,2,3,4,5,5,6,7,8,9
$$

- Base=2 or Binary system:
$=0,1$
- $0 \equiv 0$ 㧱 and $1 \equiv 0$ n

Video: Counting in Binary

- https://www.youtube.com/watch?v=zELAfmp3fXY

Decimal (Base 10) vs Binary (Base 2)

Binary	Hex	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	B	11
1100	C	12
1101	D	13
1110	E	14
1111	F	15

Converting from: Binary (base 2) to Decimal (base 10)

1	0	1	0	0	1	1	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
$1 \cdot 128+$	$0 \cdot 64+$	$1 \cdot 32+$	$0 \cdot 16+$	$0 \cdot 8+$	$1 \cdot 4+$	$1 \cdot 2+$	$1 \cdot 1$
$=128+32+4+2+1$							
$=167$							

We found that:
$10100111_{2}=167_{10}$

Practice Converting from: Binary (base 2) to Decimal (base 10)

$$
\begin{array}{lccccccc}
\overline{2^{7}} & \overline{2^{6}} & \overline{2^{5}} & \overline{2^{4}} & \overline{2^{3}} & \overline{2^{2}} & \overline{2^{1}} & \overline{2^{0}} \\
128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
\ldots & 128+\ldots & 64+\ldots & 32+\ldots & 16+\ldots & 8+\ldots & \cdot 4+\ldots & 2+\ldots \cdot 1
\end{array}
$$

Converting from: Decimal (base 10) to Binary (base 2)

$167 \div 2=83$	remainder $=$	1
$83 \div 2=41$	remainder $=$	1
$41 \div 2=20$	remainder $=$	1
$20 \div 2=10$	remainder $=$	0
$10 \div 2=5$	remainder $=$	0
$5 \div 2=2$	remainder $=$	1
$2 \div 2=1$	remainder $=$	0
$1 \div 2=0$	remainder $=$	1

We found that:
$167_{10}=10100111_{2}$

Practice Converting from: Decimal (base 10) to Binary (base 2)

\qquad $\div 2=$ \qquad remainder =
\qquad
\qquad remainder =
\qquad $\div 2=$ \qquad remainder =
$\ldots \div{ }^{2}=$ \qquad remainder =
$\ldots{ }^{2}=$ \qquad remainder =
\qquad
\qquad remainder $=$
\qquad $\div 2=$ \qquad remainder =
\qquad

$$
\div 2=
$$

\qquad remainder =

Another Way to Convert between binary and decimal

- Google it! (type "convert from \qquad to ___")
- https://www.binaryhexconverter.com/binary-to-decimal-converter

The point of binary: Communication

Ascii: To help those of us who aren't fluent in binary

ASCII Characters - A way to numerically represent letters ASCII TABLE

My Name in binary

Character		Decimal		Binary
- M	->	77	->	01001101
- a	->	97	->	01100001
- r	->	114	->	01110010
- s	->	115	->	01110011
- [space]	->	32	->	00100000
- B	->	66	->	01000010
- e	->	101	->	01100101
- r	->	114	->	01110010

My Name written in Binary

01001101, 01100001, 01110010, 01110011, 00100000, 01000010, 01100101, 01110010, 01110111, 01100001, 01101110, 01100111, 01100101, 01110010

Binary Applications on Arduino

- Functions Arduino uses to control other devices (~DigitalRead and DigitalWrite)
- AnalogWrite()
- Using PWM (Pulse Width Modulation)
- AnalogRead()
- Using ADC (Analog to Digital Conversion)

Your Task for Today

1. Complete Binary/Ascii Worksheet
2. Give Arduino Project Presentations and make sure documentation turned in
3. Get ahead: ADC/PWM challenges

- We'll discuss this more in depth tomorrow but I have the notes on my blog already and some of you already are familiar with this

4. Historical Technology Project (we will have a laptop cart tomorrow)

Closing

-What is the point of binary?

- Another counting system is Hexadecimal (base 16 as opposed to binary base 2 or decimal base 10). What do you think is the advantage of Hexadecimal
- Why do we regularly use a base 10 counting system as opposed to base 2 or base 16 or another base?

