Binary Counting & ASCII Values

Wheeler HS Fall 19

Finishing the Semester

Finishing Electrical Engineering Loose Ends

- 1. Binary and Ascii
 - Notes & worksheet
- 2. Arduino Project "Presentations"
- 3. ADC & PWM Challenges

Warmup: Asides from "ten" how can you symbolically show that there are 10 of an object?

Key words

- Digital
- Binary System
- Data
- Base=10
- Base=2
- Switch (Electronics)

What is the binary system and how is it used in computing?

- We use number systems everyday.
- Hold up your hand-how many fingers do you see?
- TEN! We use a base-10 number set
- Base=10 has 0,1,2,3,4,5,6,7,8,9
- Our computers uses a number set too-the binary system!

But how does it work???

- Base-10 or the decimal system
 - -0,1,2,3,4,5,6,7,8,9
- Base-2 or Binary system:
 - =0,1
- 0≡Off and 1≡On

Video: Counting in Binary

<u>https://www.youtube.com/watch?v=zELAfmp3fXY</u>

Decimal (Base 10) vs Binary (Base 2)

Binary	Hex	Decimal
0000	O	Ο
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	в	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

Converting from: Binary (base 2) to Decimal (base 10)

1	0	1	0	0	1	1	1
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
128	64	32	16	8	4	2	1
1 · 128 +	$0\cdot 64$ +	1 · 32 +	0 · 16 +	$0 \cdot 8 +$	$1 \cdot 4 +$	$1 \cdot 2 +$	$1 \cdot 1$

= 128 + 32 + 4 + 2 + 1= 167

We found that: 10100111₂ = 167₁₀

Practice Converting from: Binary (base 2) to Decimal (base 10)

Converting from: Decimal (base 10) to Binary (base 2)

 $_{167 \pm 2} = 83$ remainder = $_{83 \pm 2} = 41$ remainder = 1 $_{41 \pm 2} = 20$ remainder = 1 $_{20 \pm 2} = 10$ remainder = 0 $_{10 \pm 2} = 5$ remainder = 0 $_{5 \pm 2} = 2$ remainder = 1 $_{2 \pm 2} = 1$ remainder = 0 $_{1 \pm 2} = 0$ remainder = 1

We found that: $167_{10} = 10100111_2$

Practice Converting from: Decimal (base 10) to Binary (base 2)

Another Way to Convert between binary and decimal

- Google it! (type "convert from _____ to ____")
- <u>https://www.binaryhexconverter.com/binary-to-decimal-converter</u>

The point of binary: Communication

Ascii: To help those of us who aren't fluent in binary

ASCII Characters – A way to numerically represent letters ASCII TABLE

Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	2
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001		a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	С
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101	145	е
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	(BELL)	55	37	110111	67	7	103	67	1100111		g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	1
10	A.	1010	12	[LINE FEED]	58	3A	111010	72	1	106	6A	1101010	152	j
11	В	1011	13	[VERTICAL TAB]	59	3B	111011	73	1	107	6B	1101011	153	k
12	С	1100	14	(FORM FEED)	60	3C	111100	74	<	108	6C	1101100	154	1
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	=	109	6D	1101101	155	m
14	E	1110	16	[SHIFT OUT]	62	3E	111110	76	>	110	6E	1101110	156	n
15	F	1111	17	[SHIFT IN]	63	3F	111111	77	?	111	6F	1101111	157	0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000	100	0	112	70	1110000	160	р
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	Α	113	71	1110001	161	q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010	102	В	114	72	1110010	162	r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011		С	115	73	1110011		S
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100	104	D	116	74	1110100		t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101	105	E	117	75	1110101	165	u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110	106	F	118	76	1110110	166	v
23	17	10111	27	[ENG OF TRANS. BLOCK]	71	47	1000111	107	G	119	77	1110111	167	w
24	18	11000	30	[CANCEL]	72	48	1001000	110	н	120	78	1111000	170	x
25	19	11001	31	[END OF MEDIUM]	73	49	1001001	111	1	121	79	1111001	171	У
26	1A	11010	32	(SUBSTITUTE)	74	4A	1001010	112	J	122	7A	1111010	172	z
27	1B	11011	33	(ESCAPE)	75	4B	1001011	113	ĸ	123	7B	1111011	173	{
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100	114	L	124	7C	1111100	174	
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101	115	M	125	7D	1111101	175	}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110	116	N	126	7E	1111110	176	~
31	1F	11111	37	[UNIT SEPARATOR]	79	4F	1001111		0	127	7F	11111111	177	[DEL]
32	20	100000	40	[SPACE]	80	50	1010000	120	Ρ					

My Name in binary

Character		Decimal		Binary
• M	->	77	->	01001101
• a	->	97	->	01100001
• r	->	114	->	01110010
• S	->	115	->	01110011
 [space] 	->	32	->	00100000
• B	->	66	->	01000010
• e	->	101	->	01100101
• r	->	114	->	01110010

My Name written in Binary

Binary Applications on Arduino

- Functions Arduino uses to control other devices (~DigitalRead and DigitalWrite)
 - AnalogWrite()
 - Using PWM (Pulse Width Modulation)
 - AnalogRead()
 - Using ADC (Analog to Digital Conversion)

Your Task for Today

- 1. Complete Binary/Ascii Worksheet
- 2. Give Arduino Project Presentations and make sure documentation turned in
- 3. Get ahead: ADC/PWM challenges
 - We'll discuss this more in depth tomorrow but I have the notes on my blog already and some of you already are familiar with this
- 4. Historical Technology Project (we will have a laptop cart tomorrow)

Closing

- What is the point of binary?
- Another counting system is Hexadecimal (base 16 as opposed to binary base 2 or decimal base 10). What do you think is the advantage of Hexadecimal
- Why do we regularly use a base 10 counting system as opposed to base 2 or base 16 or another base?