Binary Counting & ASCII Values

Wheeler HS Fall 18

Key words

- Digital
- Binary System
- Data
- Base=10
- Base=2
- Switch (Electronics)

What is the binary system and how is it used in computing?

- We use number systems everyday.
- Hold up your hand-how many fingers do you see?
- TEN! We use a base-10 number set
- Base-10 has 0,1,2,3,4,5,6,7,8,9
- Our computers uses a number set too-the binary system!

But how does it work???

- Base-10 or the decimal system
 - -0,1,2,3,4,5,6,7,8,9
- Base-2 or Binary system:
 - =0,1
- 0≡Off and 1≡On

Video: Counting in Binary

<u>https://www.youtube.com/watch?v=zELAfmp3fXY</u>

Decimal (Base 10) vs Binary (Base 2)

Binary	Hex	Decimal
0000	D	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	в	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

Converting from: Binary (base 2) to Decimal (base 10)

1	0	1	0	0	1	1	1
27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
128	64	32	16	8	4	2	1
1 · 128 +	0.64 +	1 · 32 +	0 · 16 +	$0 \cdot 8 +$	$1 \cdot 4 +$	$1 \cdot 2 +$	$1 \cdot 1$

= 128 + 32 + 4 + 2 + 1= 167

We found that: 10100111₂ = 167₁₀

Practice Converting from: Binary (base 2) to Decimal (base 10)

Converting from: Decimal (base 10) to Binary (base 2)

 $_{167 \pm 2} = 83$ remainder = $_{83 \pm 2} = 41$ remainder = 1 $_{41 \pm 2} = 20$ remainder = 1 $_{20 \pm 2} = 10$ remainder = 0 $_{10 \pm 2} = 5$ remainder = 0 $_{5 \pm 2} = 2$ remainder = 1 $_{2 \pm 2} = 1$ remainder = 0 $_{1 \pm 2} = 0$ remainder = 1

We found that: $167_{10} = 10100111_2$

Practice Converting from: Decimal (base 10) to Binary (base 2)

Another Way to Convert between binary and decimal

- Google it! (type "convert from _____ to ____")
- <u>https://www.binaryhexconverter.com/binary-to-decimal-converter</u>

ASCII Characters – A way to numerically represent letters

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	0	96	60	140	`
1	1	1		33	21	41	!	65	41	101	A	97	61	141	а
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	С	99	63	143	с
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	i
10	A	12		42	2A	52	*	74	4A	112	J	106	6A	152	j
11	В	13		43	2B	53	+	75	4B	113	к	107	6B	153	k
12	С	14		44	2C	54	,	76	4C	114	L	108	6C	154	I
13	D	15		45	2D	55	-	77	4D	115	м	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	/	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	Р	112	70	160	р
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	S
20	14	24		52	34	64	4	84	54	124	Т	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	v
23	17	27		55	37	67	7	87	57	127	w	119	77	167	w
24	18	30		56	38	70	8	88	58	130	х	120	78	170	x
25	19	31		57	39	71	9	89	59	131	Y	121	79	171	У
26	1A	32		58	ЗA	72	:	90	5A	132	Z	122	7A	172	z
27	1B	33		59	3B	73	;	91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	\	124	7C	174	1
29	1D	35		61	3D	75	=	93	5D	135]	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137	_	127	7F	177	

My Name in binary

Character		Decimal		Binary
• M	->	77	->	01001101
• a	->	97	->	01100001
• r	->	114	->	01110010
• S	->	115	->	01110011
 [space] 	->	32	->	01000000
• B	->	66	->	01000010
• e	->	101	->	01100101
• r	->	114	->	01110010

My Name written in Binary

Closing

- What is the point of binary?
- Another counting system is Hexadecimal (base 16 as opposed to binary base 2 or decimal base 10). What do you think is the advantage of Hexadecimal
- Why do we regularly use a base 10 counting system as opposed to base 2 or base 16 or another base?