Opening Question:

What would your life be like without electricity?

Electrical Engineering Intro

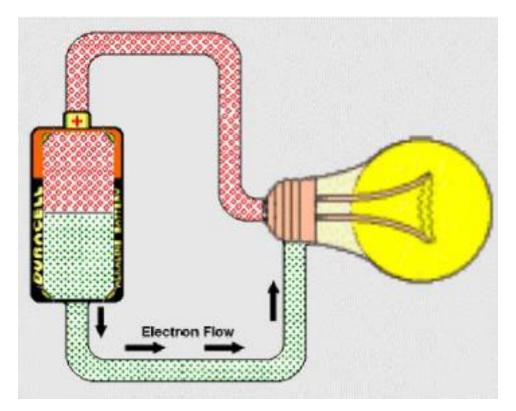
Foundations of Engineering and Technology

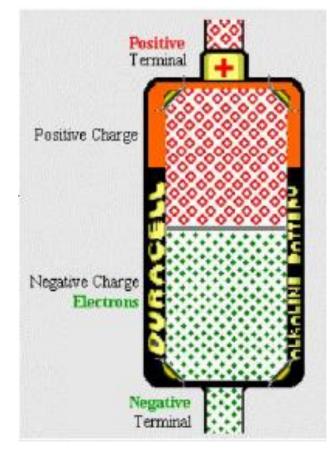
Wheeler HS

PBS intro video

https://www.youtube.com/watch?v=3nB1Ntku06w

Branches of EE


- Electronics
- Digital Design/Controls
- Computer
- Power
- Telecommunications


What is Electricity

- Electricity: Flow of electrons
 - Atoms in every material are made up of electrons and protons
 - Electrons (- charge) are attracted to protons (+ charge)
- Insulators: Materials with immobile electrons
- **Conductors:** Materials with free-to-move electrons

More on Electricity

- A surplus of electrons is called a negative charge (-)
- A shortage of electrons is called a positive charge (+)

• Connecting a **conductor** from the positive to negative terminal on a battery causes electricity to flow

Why we're learning it

- Major branch of Engineering
 - Broadest and with the most job opportunities [citation needed]
- Related to many different fields
 - Biomedical
 - Relations to computer and software engineering
 - Electricity in mechanics
 - Cars
 - Planes
 - Electricity in infrastructure
 - Buildings
 - City planning
 - Electricity in everything

What we're doing

- 1. Basics of electricity
- 2. Analogue electronics (think wires and lightbulbs)
- 3. Digital electronics (think computers)
- 4. Coding with Arduino (&Raspberry Pi???)
- 5. Summative project
 - Project with Arduino or with electronics

Basics of Electricity

Foundations of Engineering and Technology

Wheeler HS

Basics of Electricity

- Key terms to know
 - **Voltage** (V): difference in electrical charge between two points (such as the + and ends of a battery)
 - Unit: Voltage (V)
 - Current (I): rate of flow of electricity
 - Unit: Current (A)
 - Resistance (R): resistance to the flow of electricity
 - Unit: Ohms (Ω)

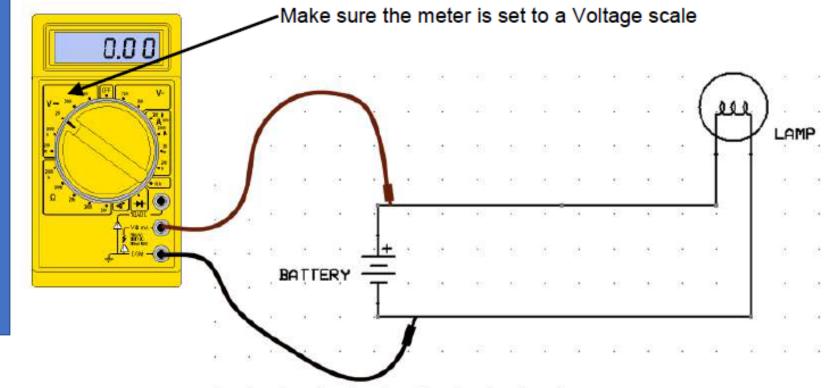
Analogies for Voltage, Current and Resistance

- Analogy #1: Electricity as a water pump
 - https://www.youtube.com/watch?v=O5Cpd4U-v80
 - Voltage ~ pressure of the pump
 - Current ~ the rate of water flow
 - Resistance ~ how much the hose resists the flow of water
- Analogy #2: Electricity as a ball rolling down a hill
 - Voltage ~ height of ball on a hill
 - Current ~ mass of the ball
 - Resistance ~ friction on hill

Voltage

- The voltage is the difference in charge between two points in space
 - EX: difference in charge between a battery's + and terminal

Water Analogy


- A battery is analogous to a pump
- A higher voltage battery is analogous to a higher pressure pump

Hill Analogy

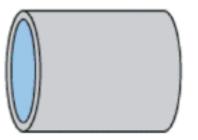
- A battery is analogous to the hill
- A higher voltage battery is analogous to a taller hill

Measuring Voltage

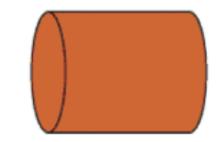
- · Always measured between two points in a circuit
- Negative (black lead) connects to a reference point (often ground or battery -)
- · Positive (red lead) connects to another point in the circuit

What To Do 1. Turn dial to this symbol: V 2. Make sure black wire is in "COM" and Red in "V" 3. Test away!

Current


• The rate at which charge flows

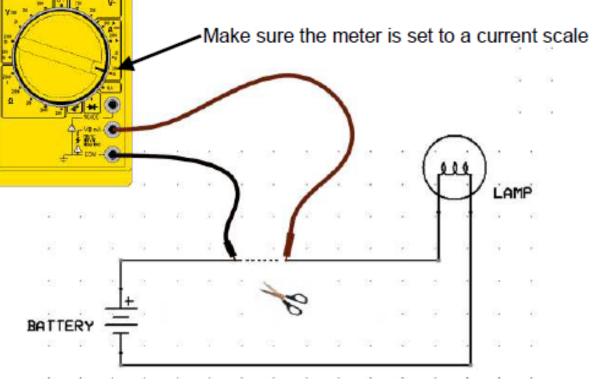
Water Analogy


• Current is like the rate of water flow

Hill Analogy

• A battery is analogous to the mass of the falling rock

Flow of Water


Flow of Charge

Measuring Current

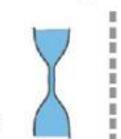
0.00

What To Do 1. Turn dial to this symbol: A 2. Make sure black wire is in "COM" and Red in "A" 3. Connect the meter into the circuit 4. Test away!

- Current is measured through a section of a circuit
- Meter must be connected in series
- Open a section of the circuit
- Re-complete the circuit with the meter
- · Meter acts like a "smart wire"

Resistance

Def: Material's tendency to resist the flow of charge


Water Analogy

• Restriction of water flow by tube

Hill Analogy

- Friction on hill/in air
- Angle of the ramp

Constriction creates Resistance to water flow

Resistor creates Resistance to current flow

Measuring Resistance

- · Measured with resistor (or other device) out of circuit
- · Connect one lead to each lead of the component

What To Do 1. Turn dial to this symbol: Ω 2. Make sure black wire is in "COM" and Red in " Ω " 3. Test away!

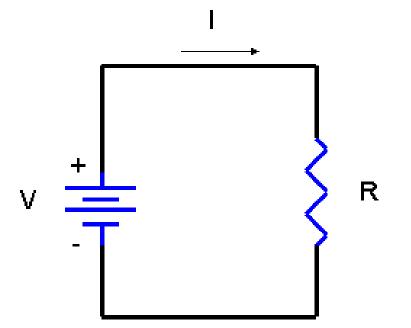
Voltage, Current and Resistance: How are they related

- There's a formula!
 - Ohm's Law: $V = I \times R$

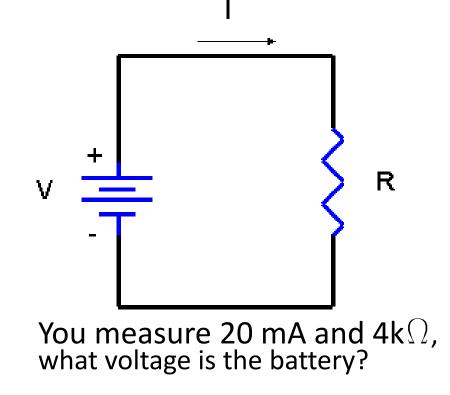
$$I = \frac{V}{R}$$
$$R = \frac{V}{I}$$

Know your units!

- Prefixes matter!
 - Resistance is often measured in the 1000's of ohm's or more.
 - Current is often measured in 1/1000's or less.


Important prefixes to know:

- 1 k Ω = 1000 Ω
- 1 M Ω = 1000 k Ω = 1,000,000 Ω
- 1 mA = .001 A
- 1 μ A = .001 mA = .000001 A


1 1 1	
IInit	Prefixes
	FIEIXE

Name	Symbol	
giga-	G	10 ⁹
mega-	М	10 ⁶
kilo-	k	10 ³
deci-	d	10 ⁻¹
centi-	С	10 ⁻²
milli-	m	10 -3
micro-	μ	10-6
nano-	n	10 -9
pico-	р	10 ⁻¹²

Simple Examples

Using a 12 V battery, you measure a resistance of 2 $k\Omega$ on a circuit. What is the current?

To Do

• Complete worksheet on Ohm's Law

Closing: So which is more dangerous: Voltage or Current?

