

(Computer Aided Design)

WHAT IS CAD

- Computer Aided Design
 - Used in the creation, modification, analysis, or optimization of a **design**
 - Used primarily by Architects, Industrial Designers, graphic designers and Engineers creating mechanical parts or structures
- Why we learned it:
 - Nearly all engineers or anyone working in a technical company will likely encounter CAD in some manner

SOME COMMON CAD SOFTWARE

- CAD Software for Mechanical Design
 - SolidWorks
 - AutoCAD
 - Fusion
 - Inventor

- Other types
 - CAD for Electrical design
 - Eagle

SOME EXAMPLES OF CAD PROJECTS - COMPLEX PARTS

MORE EXAMPLES - A CAR!

LIVE IN YOUR VERY OWN VIRTUAL HOUSE

WHAT A BEAUTIFUL FAUCET

NOT JUST MECHANICAL DESIGNS! EXHIBIT 1: MAKING A SCHEMATIC (~ELECTRICAL DRAWING)

KEY TAKFAWAYS FROM SOLIDWORKS

- Features and basic structure in forming a SolidWorks (or other) part
- Assemblies and drawings
- Views

Parts sketch/2D Extrude/3D Edges Finishing Assembly Drawing Views Isometric Orthographic Oblique Perspective

SKETCHING & BASIC TERMS

- Sketch: Forms the basis of all extruded features
 - Shapes/commands
 - Rectangle
 - Circle
 - Arc
 - Line
- Vertex: Corner where two edges meet
- Face: forms the outside surface of a part
- Edge: boundary of a face

Parts sketch/2D Extrude/3D Edges Finishing Assembly Drawing Views Isometric Orthographic Oblique Perspective

FEATURES – EXTRUSIONS AND CUTS

- Extrusion:
 - Base extrude: creates "depth" to a sketch
 - Boss extrude: adding to an extruded part
 - Cut extrude: cutting from an extruded part

- Cut: removes material from a part
- Shell: hollows a part

Parts sketch/2D Extrude/3D Edges Finishing Assembly Drawing Views Isometric Orthographic Oblique Perspective

FEATURES - EDGES

- Fillet: rounds an edge to make it smoother
- Chamfer: bevels an edge (not smooth)

ASSEMBLY

- Assembly: A composition of multiple parts
- Mate: relationships that align and fit parts together

Parts

sketch/2D

Edges

Extrude/3D

DRAWING

- Drawing Formal way of showing a part or assembly
 - Should communicate shape, size and vital info
- Title block: label on a drawing (usually has part name, version and company/designer info)

Parts

sketch/2D

Edges

Extrude/3D

VIEWS - ISOMETRIC

- "Normal" view you saw in SolidWorks
- Drawn to scale
- Edges usually slanting at 30°

VIEWS - ORTHOGRAPHIC

- 2D projection of a 3D object
- Shows the front, side and top of an object

Parts
sketch/2D
Extrude/3D
Edges
Finishing
Assembly
Drawing
Views
Isometric
Orthographic
Oblique
Perspective

VIEWS - OBLIQUE

- Similar to isometric, except focus is on face of an object
- Front even to plane and side at 45°
- NOT TO SCALE

VIEWS - PERSPECTIVE

 Similar to isometric/orthographic, except it accounts for perspective i.e. things that are further away appear smaller

Isometric

sketch/2D Extrude/3D Edges Finishing Assembly Drawing Views Isometric Orthographic Oblique Perspective

Parts

TO DO TODAY

- To finish the Mechanical Engineering unit, I want us to have a formal recap of key takeaways. To do this, you will create notes over these slides, and basic material machining (we'll discuss this one tomorrow).
- To work on today: (one formative grade in gradebook)
 - create notes over the material in these slides (template on my blog if you want it)
 OR
 - At the end of class today take a brief quiz (you can use **your** notes for this)
 - If time: Learn to weld in groups of \sim 3 at a time

