Circuits Worksheet

- 2. Calculate the equivalent resistance of the following combination: $R_{eq} = \frac{1.1}{2}$

3. Complete the table by calculating the total resistance of the following series circuit. (*Note: components in series have the same current and their voltages add together*). Then, calculate total circuit current and the voltage drops and resistance for each of the resistors.

	V	Ι	R
R 1		.001A	
R 2		.001A	
R 3		.001A	

Total circuit current:

4. Complete the table by calculating the total resistance of the following parallel circuit. (*Note: components in parallel have the same voltage and their currents add together*). Then calculate total circuit current and the voltage drops and resistance for each of the resistors.

	V	Ι	R
R 1	12V		
R 2	12V		
R 3	12V		

Total circuit current:

Name: _____

5. What is the equivalent resistance for the resistors in the figure below?

6. What is the equivalent resistance for the resistors in the figure below?

- 7. For the circuit below, find the following:
 - a What is the equivalent resistance?
 - b What is the total voltage drop across the entire circuit?
 - c What is the total current?

